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SUMMARY 
An alternative is given for the approach of the two-dimensional problem presented in [12]. Because of the 
mathematical simplicity of this alternative, several extensions of the model are possible. In this work the 
compressibility of the perilymph and variations of the scalaheight are considered; other extensions are 
briefly discussed. 

The numerical calculations lead to the following conclusions: (1) the results of the one- and two-dimen- 
sional models show large quantitative but hardly any qualitative differences; (2) Von B6k6sy's [1 ] conclusions 
concerning the influence of the scalaheight upon the motion of the partition are incorrect; (3) the quantitative 
discrepancies between the model's results and the experiments of Rhode [6] can be eliminated by a large 
reduction of the scalaheight; (4) the phase difference as a function of frequency and the phase velocity show 
no qualitative disparities with the experimental data; (5) models with few sections, such as the hybrid 
computer model of Hubbard and Geisler [4] are inaccurate. 

1. Introduction 

In [12] a two-dimensional model for the cochlea was presented. The formulation of the 

problem as a boundary-value problem led to two coupled integral equations for the pressure 

difference across the windows and that across the membrane. By means of  an asymptotic 
method an ordinary differential equation with boundary conditions could be obtained for 

the t ransmembrane pressure (i.e. the pressure difference across the membrane).  This 

equation appeared to be an improvement of  the corresponding equation resulting from 
one-dimensional models. An important feature of  the model is the validity of  the equation 

for all frequencies, so that no longer either a short-wave or a long-wave approximation is 
required. 

It  turns out to be possible to derive the same differential equation by a method which is 
more direct but somewhat less rigorous than the one used in [12]. The approach used in 
this work (Section 2) is not to be regarded in itself, since then the more rigorous method is 
preferable. The simplicity of the present approach enables us however to extend the model 

in various ways without making the computations too complicated. In Section 3 the 
compressibility of  the fluid and variations in the scalaheight will be taken into account. 
Extension to a three-dimensional model and replacement of  the membrane by a plate are 
briefly discussed. Furthermore attention will be paid to the viscosity of  the perilymph. 

In Section 4 the results of  the numerical calculations will be shown. The difference 
between the one-dimensional and the two-dimensional models will be outlined; the in- 
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12 M. A. Viergever 

fluence of the scalaheight upon the motion of the partition and the influence of the dis- 
cretization in the axial direction, which is necessary for the solution of the differential 
equation, also are looked upon. 

In Section 5 the results are discussed and compared with experimental data and with 
results of other models. Some interesting conclusions can be drawn. 

2. The heuristic m e t h o d  

As a starting point the same assumptions as in [12] are used. These were: 
- only linear phenomena are considered; the driving forces and the resulting responses are 

taken to be so small that non-linear effects are excluded, 
- the spiral coiling is dispensed with, 
- the scala media is replaced by a single membrane, 
- variations in the direction along the width of the membrane are ignored, 
- the scala walls are rigid, 
- the heights of the scalae are equal and constant, 
- the fluid is considered as incompressible and inviscid. 
One simplification, viz. the extension of the membrane to infinity, is omitted. Now the 
cochlea can be represented by Fig. 1. 

'=hi,. ..... 6- ovat window scala vestibut[ 
partition hcticotr=ma 

Y=Ol~.round window scala tympani 

y=-h I 
x=O x=L 

Figure 1. 

The scale of this figure is not correct; in reality h - 0.1 cm, while L - 3.5 cm. 
Let Psi(x, y; t) be the pressure in the scala vestibuli and Pst(x, Y; t) the pressure in the 

scala tympani. Then the difference pressure P(x, y; t) can be defined by 

P(x, y; t) = fist(x, - y ;  t) - ffs~(x, y; t), y > 0. (2.1) 

Only harmonic oscillations are considered with period 27c/co; then it holds that 

]~(x, y; t) = P(x, y)e ~~ (2.2) 

It can be proved easily [12] that P(x, y) satisfies Laplace's equation 

e~x(x, y) + P.(x, y) = o. (2.3) 

Subscripts denote differentiation with respect to the variable involved. Two of the four 
boundary conditions for (2.3) are specified. The first is 

Py(x, h) = 0, (2.4) 

which follows from the vanishing of the y-component of the fluid velocity on the walls 
y = h and y = - h. The second condition is a relation between the transmembrane pressure 
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and the velocity of the membrane: 

2P(x, O) + ~(x)Pr(x, 0) = 0. (2.5) 

The impedance ~(x) of  the cochlear partition is expressed in the point-wise mechanical 
properties of the membrane as follows: 

~(x) = (c - m~o 2 + ikco)/(pco2), (2.6) 

"with re(x), k(x) and c(x) mass, resistance and stiffness of the membrane per unit area and 
p the density of the fluid. 

The other two boundary conditions, one at x = 0 and one at x = L, are as yet irrelevant. 
Since the height of a scala is small compared to its length (the ratio is approximately 1/35), 

P(x, y) is expanded in a Taylor series around the partition; the remainder has the Lagrange 
form. 

N + I yn O" yN + 2 0N+2 
P(x,y)  =,=oZ n~f. Oy ~ P ( x ' O ) +  ( N + 2 ) !  0y N+2 P(x, Oy),  0 < 0 <  1. (2.7) 

In view of the sequel, P(x, y) is required to be N + 3 times continuously differentiable 
with respect to x and N + 2 times with respect to y. When this condition is satisfied, the 
expansion as in (2.7) is justified. It is assumed that the remainder term of the series in (2.7) 
can be neglected because of  the small values of y (y < h, h -~ 0.1 cm), provided that N 
is large enough. It follows that 

N +  ~ yn on 
P(x, y) = • - -  - -  P(x, 0). (2.8) 

,=o n! 0y" 

With the help of (2.8) eq. (2.4) yields: 

N h" 0 "+l 
Y" n! Oy "+1 P(x, O) = 0. (2.9) n=O 

Equation (2.5) remains unaltered, but eq. (2.3) changes into 

u-1 y , / ,  O,+z 0n+2 ',~ u+l y,  d,+z 

,=oZ ~ ~ OxZOy~ + ~--fi~TJP(x, O) + ,=~E n! --Ox20y " P(x, 0) = 0. (2.10) 

This relation must hold for all values of y, so that 

.ox2oy + T -r] e (x ,  0) = o, o _< n _< N - 1. (2.11) 

Hence the partial derivatives of P(x, y) with respect to y can be expressed in those with 
respect to x. For y-derivatives of even order it is found that 

02n+2 02n+e 
0y2,+2 P(x, 0) = ( -  1) "+I ~x2,+~ P(x, 0), 0 <_ n < (N - 1)/2. (2.12) 

and for those of  odd order, using (2.5), that 

02n+1 02n+1 } 
0y2.+~ P(x, O) = ( - 1 ) "  OyOxZ-----~-V(x,O) = ( - 1 )  "+1 02~ ~2P(x,O) 

0x .t , 

0 < n < N/2. (2.13) 
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Insertion of (2.12) and (2.13) into (2.9) leads to 

Z ( - 1 )  "+1 - -  ,,=o (2n)! dx 2" ( ~ ( x )  J + Y' ( - - 1 ) n + 1 "  = n=o (2n + 1)! dx 2"+2 p(x)  O. 
(2.14) 

For reasons of notation the transmembrane pressure P(x,  0) is written as p(x). The left 
hand side of (2.14) is actually a mixed series in p(x)  and p(x)/~(x). The mixed character 
causes difficulties in choosing N, since the error made with any choice of N has approxi- 
mately the same order of magnitude as one of the terms in the remaining equation. The 
reason for this idle accuracy is the large interval of values of Iffl. For the range of hearing 
and with the use of the numerical values of Peterson and Bogert [5, 2] it can be calculated 
that 1~1 varies from less than 0.1 cm to more than 105 cm. The idle accuracy that occurs is 
illustrated by two examples, viz. N = 1 and N = 2. The resulting equations are respectively 

hp~,x + 2 p  = 0, (2.15) 

hp~,x + 2p _ h2(p/Oxx _- 0. (2.16) 

In (2.15) the first neglected term on the left hand side is -h2 (p /Oxx  . For small values of 
[~[ this will be of the same order of magnitude as hp~,. In (2.16) the first neglected term is 
-h3p~=x,,. For large values of ]~[ the magnitude of this term will be the same as or even 
larger than -h2(p /O~.  It is possible to dispense with this idleness. 

Choose N = 3; then (2.14) becomes 

h a 2p _ h2(p/~)x ~ = 0. (2.17) 
hp~,~ - --6- p~,~,~,~ + --(- 

The largest neglected terms are 

h 5 d6p h 4 d4(p/O 

120 dx ~ and 12- dx 4 

The notation with subscripts is not used on account of the large number of differentiations. 
Differentiate (2.17) twice with respect to x and multiply all terms of  the resulting equation 
with hZ/6. It follows that 

h 3 d4p h s d6p h 2 d2(p/O h 4 d4(p/O 
+ - -  - 0. (2.18) 

6 dx 4 36 dx 6 3 dx 2 6 dx 4 

Now substitute (2.18) into (2.17) and neglect the terms 

h a d6p h* d'*(p/O 

- 3 6  dx 6 a n d - - 6  dx 4 ' 

since these have the same order of magnitude as the largest neglected terms due to the 
truncation at N = 3. Then one finds 

hp~,x + 2(p/O - -~h2(p/O~x = O. (2.19) 
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A two-dimensional model for the cochlea 15 

It seems reasonable to set that the error due to truncation is small with respect to the left 
hand side terms of (2.19), independent of the value of ft. At least it is clear that an idle 
accuracy as mentioned before is no longer present. 

Equation (2.19) is the same equation as found in [12]. It remains to be proved that the 
boundary conditions are the same in the two models. For the condition at the helicotrema 
(x = L) this is clear at once, since there the pressure difference between the scalae is 
equalized. For harmonic oscillations this means that 

p(L) = 0. (2.20) 

In [12] the cochlea was extended to infinity, but this is not necessary in the present model. 
For the condition at the windows (x = 0), assume that P(0, y) is prescribed. It is not 

correct to use p(0) = P(0, 0) as a boundary condition for (2.19), since then the condition 
of the two-dimensional problem would be satisfied only for y = 0. To obtain a condition 

in terms of P(0, y), P(0, y) is computed directly from (2.8): 

f l  N + 1 h" O" = P(0, 0). (2.21) P(O,y) h-1 = 0 P ( 0 ' y ) d y =  ,=o ~] ( n +  1)! 3y" 

Using (2.12) and (2.13) one gets 

(N+1)/2 (_ l ) ,h2 ,  ~2, m2 (_1),+1h2,+1 d2n 

P(0, y) = ,=oZ (2n + 1)! 0x2, P(0, 0) + 2 ,=oZ (2n + 2) t. dx2n w(O), (2.22) 

where w(x) = P(x, O)/~(x). 
Obviously N must have the same value as in the derivation of (2.19), viz. N = 3. Then 

(2.22) becomes 
h z h 3 h ~ 

P(O, y) = p(O) - hw(O) - - ~  px~(O) + - ~  w~(O) + ~ p~x~(O). (2.23) 
IZU 

Once more p(x) is used instead of P(x, 0) since the y-dependence of P(x, y) has been 
eliminated. 

The largest neglected terms in (2.23) are -h6pVi(O)/5040 and -hSwiv(O)/360. 
According to (2.19) 

h 2 h h 3 h h 2 
- ~-7-Px~(O) = -~ w(O) - ~ -  w~x(O), wxx(O) = - z~-P~xx~'(O) + -~-w~x~x(0). (2.24) 

Substitution of (2.24) into (2.23) yields 

2 h  h 4 
P(O, y) = p(O) - -w- w(O) + -vz-. p~xx~(O) - 

. 5  4 3  

h 5 
w~xxx(0). (2.25) 

108 

The last term of (2.25) can be neglected since it has the same order of magnitude as one of 
the neglected terms in (2.23). Then still the condition found has a higher accuracy than the 
differential equation itself. For, the largest neglected terms in (2.17) have an order of mag- 
nitude which is h4d4/dx 4 times that of the largest retained terms. With the same degree of 
accuracy, (2.25) becomes 
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16 M. A. Viergever 

t ' (0 ,  y )  
p(O) = 1 - 2h/(3~(0))  ' (2.26) 

just as in [12]. 
Now the condition for the ordinary differential equation has been expressed as a function 

of the original condition for the two-dimensional problem. Only the magnitude, not the 
form of the prescribed difference pressure is of importance as to the motion of the partition. 
Therefore the model will not be described correctly by (2.19) with (2.20) and (2.26) in the 
immediate vicinity of the windows, since there the form of the input signal has its influence 
upon the flow and hence upon the motion of the membrane. 

The mathematical treatment presented in the foregoing has been somewhat less rigorous 
than the one described in the first part of this work; this holds especially for the determi- 
nation of the boundary condition at the windows. Moreover the choice of N has not been 
justified. We will return to this point in Section 3 where the effect of increasing the value 
of N is treated. The correctness of the mathematical description is hardly open to doubt, 
since the results are identical to those in [12]. On the other hand the model itself has many 
imperfections. These have to be removed as much as possible. In the next section several 
extensions of the present model are discussed utilizing the approach described above. 
Application of the method of part I to these extensions is not feasible. 

3. Extensions of the model 

The model of Section 2 can be extended easily in several ways because of its mathematical 
simplicity. In this work the compressibility of the perilymph and variations in the scalaheight 
are considered; the viscosity of the fluid is taken into account too, albeit in a different 
manner. Other extensions will be discussed shortly. Moreover attention is paid to more 
accurate differential equations than the one obtained in Section 2, by choosing a value of 
N larger than 3. 

To start with the last, by choosing N = 5 and proceeding in the same way as in Section 2, 
one can derive that 

2p 2h 2 2h 4 
hp~x + - -  (p/~)~ - - -  ( p / ~ ) ~  = O. (3.1) 

3 45 

This is a fourth order differential equation which needs four boundary conditions to be 
solved. One condition is (2.20), the second is the analogue of (2.26) for N = 5, the third 
and fourth conditions can be obtained from higher moments of P(0, y), for example 
~=o yP(O, y)dy and y2p(o, y)dy. Not only the determination of the boundary con- 
ditions, but also the numerical calculations become more complicated. Now consider the 
gain in accuracy that can be expected with respect to the truncation at N = 3. This gain 
should come from the last left hand side term. The numerical solution of (2.19) shows that 
the magnitude of this term is only a few percent of the magnitude of 2p/~. The argument used 
is somewhat tricky, since the crucial term was not taken along in the numerical calculations. 

One remark must be made: the choice N = 4 would be a bad one, since then also a fourth 
order differential equation would result with the same disadvantages as (3.1), but a smaller 
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A two-dimensional model for the cochlea 17 

gain in accuracy, if any. Resuming it seems reasonable to conclude that N = 3 is the 
optimal value for our purpose. The next to be regarded is the compressibility of the peri- 
lymph. As a consequence of this, Laplace's equation (2.3) changes into 

AP(x, y) + 092p(x, y)/a 2 = 0, (3.2) 

where co/2rc is the frequency of the input signal and a(p) the velocity of sound in the fluid; 
the latter is approximately a constant on account of the small variations in p. Naturally, 
eq. (2.10) changes likewise into 

N+I y,  { 0,+2 co z 6" ) N-1 y, 8n+Z 
. . . .  e(x, 0) + E @,+2 P(x, 0) = 0. (3.3) 

+ a 2 .=on! 

The analogues for (2.12) and (2.13) then become 

a2.+2 1 ( a2 
ay2n+2 P(x, 0) = ( -  1) "+ ~-~-.2 + ~ - ]  P(x, 0), 

0 2n+l 1( ~ 2 (-02"~n{2P(x,O)'~ 
Oy2n+i P(x, 0 ) = ( - - 1 )  "+ ~ x  2 +  a z ] ~ )  -J" 

Substitution of (3.4) and (3.5) into (2.9) leads to 

N/2 
Z ( - 1 )  " + i -  

n=O 
h 2" ( d  2 0 9 2 Y ~ 2 p ( x ) ~ +  

(2n)t \ -d~x z + a2 ] t r J 

(3.4) 

(3.5) 

+ (N-1)/2~ (--1) "+i hZ.+l ( d 2 0)2 y + i  
,=0 (2n + 1)! \ ~ x  2 + -~-]  p(x) = 0. (3.6) 

For the range of hearing, o) < 105 c.p.s, while a = 1.43 �9 105 cm/s ([5]). Since h ~- 0.1 cm, 
the dimensionless quantity h2~oZ/a 2 < 0.01, so that it can be ignored with respect to unity. 
Now with N = 3, (3.6) becomes 

(.0 2 h 3 2ff 
h--~-p + hpx x - -~-Pxxxx + ~ - h2(p/O~x = 0. (3.7) 

With the process utilized in Section 2, this yields 

09 2 2p 2h 2 
hp~ x + h ~ -  p + ~ - --if- (P/O~, = 0. (3.8) 

With the same neglects the boundary conditions (2.20) and (2.26) remain unchanged. 
The variation of the scalaheights with the axial coordinate x can be treated also with 

the heuristic method. The heights of the scalae are still considered as equal, since otherwise 
the difference pressure P(x, y) could not be defined in such a simple way. 

When h = h(x), equation (2.4) is no longer valid. The vanishing of the normal component 
of the fluid velocity on the walls is now given by 

-h~Px(x, h) + Py(x, h) = O, (3.9) 
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18 M. A. Viergever 

which renders 

N h n 0.+1 u+l h" 0" 
Z n! @,+1 P(x,O) - hx ]E n ~ - - P x ( x , O )  = 0. (3.10) 

n = o n = o aY n 

Substitution of (3.4) and (3.5) into (3.10) yields 

N/2 h2. ( a2 
2 2 ( - 1 )  " + 1 -  

.=o (2n)! ~ + a z ] (P/~) + 

+ (u- 1)/2.=oZ ( -  1) "+a'(2n + 1)lhZn+l ( a x - a - / - T w  + ~ - t  d2 0)2 y + l p +  

(N+1)12 h2n ( d 2 (.02"~n N]2 
-hx n~=o ( -1)"  (~n).t \-~x2 + - ~ - ) P x -  2hx n=o ~ (-1)"+a x 

x (2n + i)! + a 2 ] = o. (3.11) 

Application of the process used in Section 2 leads for N = 3 to a very complicated equa- 
tion, even when hZo~2/a 2 is ignored with respect to unity. Therefore a further simplification 
is made. From Zwislocki [14], it appears that h(x) varies slowly from about 2 mm at the 
windows to 0.5 mm near the helicotrema. Hence the derivatives of h(x) will have at most 
the same order of magnitude as h(x) itself, say O(h). Now O(h 2) is neglected with respect 
to O(1); the error made by this simplification can be a few percent only, which is negligible 
compared to the accuracy of the numerical data. Doing so, one finds after some tedious 
calculations, that (3.11) is approximated by 

co z 2p _ 2hhx(p/~)~ -{hZ(p/()xx = 0. (3.12) hp:,x + h~:p~ + h ~ - p  +-- ( -  

For this equation boundary condition (2.20) obviously still holds good. Condition (2.26) 
on the other hand must be replaced by another condition. With an analogous derivation 
as was used for (2.26) and neglecting once more h2co2/a 2 and O(h 2) with respect to unity, 
one gets 

2h(0) 
1 3 ~ ;  pt.o) + ~h(O)hx(O)p~(O) = P(O, y), (3.13) 

so that here also the conditions for the ordinary differential equation can be derived from 
the conditions of the two-dimensional model directly. 

The viscosity of the perilymph can be taken into account by localizing the viscous effects 
in a boundary layer along the wails and the partition; the flow outside the layer is inviscid. 
When the problem is formulated in this way, the boundary layer quantities can be de- 
rived as functions of the main flow quantities and hence as functions of the solution of 
the inviscid problem. In [10] this was done for small driving forces, so that only linear 
effects are considered. In [9, 11] a correction was given for non-linear phenomena. The 
derivations were not confined to a one-dimensional treatment, so that the results can be 
applied to the present model. 
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A two-dimensional model for the cochlea 19 

Even with the above extensions, the model is still far from perfect. The main imperfection 
is the characterization of the cochlear partition by a point impedance function as in (2.5). 
Von B6k6sy [1] has shown that the basilar membrane has no significant tension and there- 
fore is better represented by a plate, with a beam as analogue in the two-dimensional 
model. Then however the arches of Corti, which are stiff relative to the basilar membrane, 
are not taken into account. Hence a more detailed structure is necessary, as indicated by 
Steele [8]. With this representation no two-dimensional analogue can be found; the third 
direction is essential in the concept. Steele needed a rather specific geometry and some not 
justified mathematical simplifications besides to solve the three-dimensional problem. 
Because of its simplicity the heuristic approach enables a more general treatment; this 
however is preserved for a later paper. 

4. Numerical results 

To get an insight in the meaning of the results of the two-dimensional model, eq. (2.19) has 
been solved with the aid of a digital computer. For the sake of clarity the effects caused by 
compressibility of the fluid and by variations in the scala height were not taken into account. 
As boundary conditions for (2.19) were chosen p(0) = 1 dyn/cm 2 and p(3.5) = 0 dyn/cm 2. 
It is emphasized that this does not affect the two-dimensional character of the model. For, 
p(0) depends on the average of P(0, y) over y, so that only the magnitude of the input 
signal is of importance for the motion of the membrane; the form of the signal is irrelevant. 
The same conclusion was reached by Van Dijk [3]. To enable a comparison with one- 
dimensional models, equation (2.15) was also solved numerically. For, eq. (2.15) is identical 
to the Peterson-Bogert [5] equation for a cochlea with constant scala heights and an 
incompressible perilymph. It can be derived easily that the boundary condition at the 
windows is given by 

p(O) =P(O,y), (4.1) 

so that, in agreement with the chosen conditions for (2.19), the boundary conditions for 
(2.15) are p(0) = 1 - 2h/(3~(0)) dyn/cm 2 and p(3.5) = 0 dyn/cm 2. It is clear that (2.19) 
is equal to (2.15) plus a correction term, and that (2.26) can be written as (4.1) plus a 
correction term. The magnitudes of these correction terms are decisive for the difference 
between the motion of the partition in the one-dimensional and that in the two-dimensional 
model. Naturally the fluid motion is better represented by the two-dimensional model, 
since it has been shown by several workers that the assumption of uniformity of the pressure 
over a cross-section of a scala holds good only for small frequencies. 

We are interested above all in the motion of the membrane. Let ~/(x) be the displacement 
of the membrane. Then from (2.5) and the equation of motion it follows that: 

p(x) 
rl(x)- poo2~(x~. (4.2) 

Hence ~/(x) can be computed when (2.19) c.q. (2.15) is solved. 
For the numerical integration of the differential equation a discretization of the x-interval 

[0, L] was necessary. To this end the membrane was divided longitudinally in a number 
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20 M. A. Viergever 

of sections. This number was chosen to be 175 unless otherwise indicated; it will be shown 
that this choice is reasonable. The step unit in the integration process was consequently 
3.5/175 = 0.02 cm. Further the value of h was 0.1 cm; later in this section the effect of a 
different choice for h will be discussed. For ~(x) the values introduced by Peterson and 

Bogert were taken, viz. 

c(x) = 1.72 �9 ]09e -2x dyn/cm 3, 

k(x) = 6.737,103e -~ dyn.sec/cm 3, 

re(x) = 0.143 g/cm z, 

while p = 1.034 g/cm 3, according to Von B6k6sy [1]. 

~ 1 , 0 -  

c 

*' 0.8. 

0.S- 
o 

.~ o.,'- 

0.2. 

c 

m 

- -  2 - d i m . m o d e l  
- - -  1 -d i rn .modr  

O.S 1.0 1.5 2.0 2.5 3,0 3.5 
Dis tance a long  the memb~'ane in cm 

Figure 2. Magnitude of the difference pressure p(x) as a function of the distance to the windows for various 
frequencies co/2~ of the input signal. In all casesp(0) = 1 dyn/cm 2. Comparable results of the 1-dimensional 
model are also shown; for frequencies < 500 Hz the diffe,rence between the two models was relatively small. 

In Fig. 2 a plot is shown of the magnitude ofp(x)  for various frequencies in the range 
of  hearing. It appears that, when ~o/27c > 500 Hz, Ipl decreases monotonically with x; 
the value of fpl becomes negligible for a value of x that depends on the frequency. For  
frequencies between 100 and 500 Hz the travelling pressure wave reaches the helicotrema 
and reflects, whence standing waves appear. For  frequencies under 100 Hz the whole 
membrane vibrates. The values of 100 and 500 Hz are of course strongly dependent on 
the chosen numerical values, especially on those of the mechanical properties of the mem- 
brane, The corresponding results of the one-dimensional model are shown for three 
frequencies, all with p(0) = 1 - 2h/(3~(0)). One can see that the second right hand side 
term of this boundary condition is negligible for frequencies < 2 kHz. The error caused 
by the one-dimensional concept can be considerable when one regards fixed values of x; 
yet structural disparities between the curves obtained from the two models are hardly 
discernable. For  frequencies between 100 and 500 Hz the differences were small, and for 
frequencies under 100 Hz negligible. 

In Fig. 3 the normalized amplitude of t/(x) is presented for several frequencies. The 
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Figure 3. Normalized amplitude of  the membrane displacement as a function of  position on the membrane 
for various frequencies. Comparable results of  the one-dimensional model are also shown for 5 and 10 kHz. 

normalization is such that the value of the maximum is 1.0 for each frequency. A single 
maximum occurs for frequencies over 500 Hz; the position of the maximum varies with 
frequency. More than one local maximum is found when 100 < e)/2n < 500 Hz. For low 
frequencies (<  100 Hz), there is again only one maximum. Comparable data from the 
one-dimensional model show that for high frequencies the peaks of the curves are found at 
positions along the membrane different from those obtained by the two-dimensional model; 
the shapes of the curves on the contrary are similar. For low frequencies the differences 
were small. 

The value of the largest deflection varies considerably with frequency when the input 
transmembrane pressure is kept constant. With p(0) = 1 dyn/cm 2, the maximum deflection 
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Figure 4. Phas~fth~m~mbran~disp~ac~ment~(x)asafun~ti~n~fp~s~ti~na~ngthem~mbran~f~rvari~us 
frequencies. Comparable results for the one-dimensional model are shown for 2,5 and 10 kHz. For frequen- 
cies < 500 Hz the difference between the two models was negligible. The phase was referenced to r](0). 
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is roughly 8 * 10 -a~ cm for high frequencies (between 7 and 10 kHz) and more than 
1 * 10 -7 cm for 100 Hz. 

Fig. 4 shows the phase of the membrane displacement with respect to distance for 
different frequencies. For frequencies < 100 Hz the phase lag is negligible so that the 
whole membrane practically moves in phase. The differences between the one- and two- 
dimensional models are deceptive, since the values of the two-dimensional model strongly 
depend on the value of h, the scala height; this is illustrated in the sequel. The phase of 
p(x) is not presented; its picture is very similar to that of Fig. 4. 

Fig. 5 compares transmembrane pressures for several scala heights at an input frequency 
of 1 kHz. The differences from the curve obtained using h = 0.1 cm are small, since this 
curve lies in between the two plotted curves for h = 0.03 cm and h = 0.2 cm. 
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Figure 5. Magnitude of the difference pressure p(x) as a function of position along the membrane for 
various scalaheights (HS). The frequency of the input signal was 1 kHz. 
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Figure 6. Magnitude of the membrane displacement ~/(x) as a function of position along the membrane for 
various sealaheights (HS). Frequency of the input signal was 1 kHz. 
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The differences are larger for the magnitude of the membrane displacement, as appears 

from Fig. 6. Comparing h = 0.1 cm and h = 0.2 cm, one sees that the peaks are at the 
same position and have the same size; only the shape of the curves is somewhat different. 
The peak of  the 0.03 cm curve however, is both smaller and closer to the basal end than 
that of the 0.1 cm curve. 

The differences become still more pronounced when the phase of  the membrane dis- 
placement is looked upon (Fig. 7). The phase of the transmembrane pressure gives the 
same picture. These results allow some interesting conclusions; they are presented in 
Section 5. 
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Figure 7. Phase of the membrane displacement ~](x) as a function of position along the membrane for 
various scalaheights (HS). The frequency of the input signal was 1 kHz. The phase was referenced to ~(0). 

Another interesting point is the influence of  the step-unit in the integration process. 
In the above calculations 0.02 cm was used, so that the membrane was divided into 175 
sections. In Fig. 8 I~(x)t is shown for various step-units (3.5/N) and an input frequency of 
1000 Hz. The case N = 175 was hardly discernable from N = 350. It appears that both 
the size of the maximum displacement and its distance to the basal end decrease with 
decreasing N. For  small values of N moreover, the shape of the curve is affected. 

In the foregoing all quantities were plotted as a function of distance to the basal end 
for a constant frequency of  the input signal. In Fig. 9 the magnitude of the membrane 
displacement is shown as a function of frequency for constant positions on the membrane. 
For  frequencies < 500 Hz the picture is obscure due to the standing waves that arise. For  
higher frequencies the displacement decreases in amplitude with a slope dependent on the 
position along the membrane. The decibel scale was used because of the large amplitude 
ratios involved. 
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Figure 8. The magnitude of the basilar membrane displacement as a function of distance along the mem- 
brane for various numbers (N) of steps during the integration process. The frequency of the input signal 
was 1 kHz; the input transmembrane pressure p(0) was 1 dyn/cm z. 
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Figure 9. Amplitude of the membrane displacement as a function of frequency for several points on the 
membrane. 0 dB = 10 -7 cm displacement when p(0) = 1 dyn/cm z. 

Fig. 10 presents the phase of  the membrane displacement as a function of  frequency. 
The most conspicious feature is that the phase lag does not increase monotonically but 
reaches a maximum; this lies in the range of hearing except for the basal end part  of  the 

partition. 
Finally the phase velocity of  the displacement wave is shown in Fig. 11 as a function of 

frequency. For  frequencies < 100 Hz the phase velocity is large; this corresponds with 
Fig. 4 where was noticed that for these small frequencies the whole membrane practically 
moves in phase. When frequencies < 500 Hz are disregarded, the general picture of  Fig. 11 
is an almost constant phase velocity at first, slowly decreasing when the best frequency is 
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Figure 10. Phase of the membrane displacement as a function of frequency for several points on the mem- 
brane. The phase was referenced to its value at x = O. 
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Figure 11. The phase velocity of the membrane displacement wave as a function of frequency for various 
positions on the membrane. 

approached, increasing thereafter, at first slowly, then fast. For x = 0.5 cm, the best frequency 
is about 6 kHz, as can be seen in Fig. 3; for x = 1.0 cm and x = 1.5 cm, the best frequen- 
cies are 4 and 2 kHz respectively. 

5. Discussion and conclusions 

In this work a mathematically simple method has been developed to describe the two- 
dimensional model for the cochlea. The result for the simplest form of the model (incom- 
pressible and inviscid fluid; constant scala heights) is equation (2.14), which is approximated 
well by eq. (2.19). Moreover, the boundary conditions (2.20) and (2.26) are found which 
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can be derived directly from the conditions of the two-dimensional model. The results 
match completely with those in [12]. 

In Section 3 the compressibility of the fluid was taken into account. The resulting equation 
is (3.8), again with boundary conditions (2.20) and (2.26). Since the boundary conditions 
are identical to those in the incompressible case, the difference between (2.19) and (3.8) viz. 
the second term of (3.8) must account for the compressibility effects. 

The numerical values given for ~(x) in the literature show large differences, so that the 
frequency region for which the fluid is incompressible cannot be determined exactly. Yet 
it is clear that the role of the compressibility as to the results of the membrane displacement 
can only be a minor one in the frequency range of hearing, and certainly is negligible as 
compared to the inaccuracy of the numerical data. 

Reckoning with the variation of the scala heights in the axial direction one obtains 
equation (3.11) which is approximated by (3.12). The appropriate boundary conditions for 
(3.12) are (2.20) and (3.13). The effect of the variations in h(x) upon the boundary condition 
at the windows is presumably very small, but the effect upon the differential equation itself 
can be considerable. To my opinion, however, this extension has more theoretical than 
practical value, first because of the crudeness of the data on h(x), second since in the model 
the scala heights are still taken as equal. With regard to the results of Section 4 an important 
remark must be made. The numerical values of ~(x) and h are actually incompatible. 
Peterson and Bogert [5] used a scala cross section of 0.029 - 0.005x cmz and a membrane 
width of 0.019 + 0.0093x cm; consequently the scala height varies from 1.5 cm at the 
windows to 0.2 cm at the helicotrema. In reality, however, h varies from 0.2 cm to 0.05 cm, 
see [14]. The discrepancy stems from the one-dimensional nature of the Peterson-Bogert 
model, which does not allow a distinction between the membrane like part and the bony 
part of the cochlear partition. In the two-dimensional model such a discrepancy does not 
occur, since no uniformity of all quantities over a scala cross-section is required. 

Because the correct value of h has to be used in the two-dimensional model, the probable 
consequence is that the value of ~ needs modification. Yet the values given by Peterson- 
Bogert were used, since the scope of this work was to acquire some qualitative conclusions 
only. 

The results plotted in Figs. 2-4 show increasing differences between the one- and two- 
dimensional models with increasing frequency, as could be expected from the nature of the 
correction terms; for, I~1 decreases with increasing frequency. In despite of the sometimes 
large quantitative differences, any qualitative disparities are hardly distinguishable. 

Figs. 5-7 give the answer to an interesting question, namely whether the scala height 
bears some importance as to the motion of the partition. 

Von B6k6sy [1] concluded from his model tests that the scala height could be extended 
to infinity without influencing the wave pattern of the partition, whereas a reduction of the 
scala height to 0.3 mm would cause a slight shift of the region of maximum excitation to- 
wards the basal end. 

Fig. 6 shows that the latter conclusion is correct, but from both Figs. 6 and 7 it appears 
that the former is incorrect. It is true that the position of the maximum does not change 
when the scala height is increased, but the shape of the amplitude curve is affected and 
moreover the phase lag is reduced considerably. Further it is apparent that a reduction of 
the scala height brings about larger phase differences. 
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An indication of the effects of discretization in the axial direction can be gathered from 
Fig. 8. It is obvious that a 35 section model gives maximum displacements that are both too 
small and too close to the basal end. Therefore a hybrid computer model as presented by 
Hubbard and Geisler [4] is inaccurate, since it is confined to 31 sections. A 175-section 
model (Bogert, [2]) and a 100-section model (Wansdronk, [13]) give no significant deviations. 
The minimum number of sections is a matter of desired accuracy; for the purpose of this 
work 175 sections were good enough. 

The results presented in Figs. 9 and 10 invite to an interesting discussion. The qualitative 
agreement of Fig. 10 with the experiments of Rhode [6] is excellent, since the latter were 
performed roughly 0.9 cm from the stapes. The quantitative agreement, however, is poor, 
since the measured phase lags were much larger than the calculated ones. The same holds 
for the amplitude. When the amplitude of the membrane displacement is divided by that 
of the stapes displacement, a curve is obtained that resembles that of Rhode; this was shown 
by Hubbard and Geisler [4] for the one-dimensional model. In the present model the dis- 
crepancies can be eliminated by taking a much smaller value for h (0.2 mm instead of 1 ram). 
Then the qualitative agreement is retained, but also good quantitative agreement is found. 
The argument becomes more interesting because Rhode performed his experiments by 
making a hole in the scala tympani. The effect of this is uncertain. To my opinion the more 
detailed representation of the cochlear partition as indicated by Steele [8] provides a more 
realistic explanation for the large phase lag, but the thought that an explanation is possible 
even with the simple point impedance characterization of the partition is appealing. 

The phase velocity has been calculated to see whether the present model, being neither 
a long-wave nor a short-wave model, suffers from the main difficulty of all short wave 
models: a phase velocity that is inversely proportional to sound frequency (see [15]). The 
empirical evidence gives another picture (see e.g. [6]). From Fig. 11 it appears that the 
results are in qualitative agreement with the experiments of Rhode [6]; quantitative agree- 
ment can be obtained again by lowering the scala height considerably. 

It is obvious that the results from our model are much better than those of the short- 
wave cochlear model of Siebert [7]. This, however, is not necessarily due to the short-wave 
character of that model, since Siebert obscured the singular character of the problem as 
noted by Van Dijk [3]. 
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